Abelian Groups, Gauss Periods, and Normal Bases
نویسنده
چکیده
A result on finite abelian groups is first proved and then used to solve problems in finite fields. Particularly, all finite fields that have normal bases generated by general Gauss periods are characterized and it is shown how to find normal bases of low complexity. Dedicated to Professor Chao Ko on his 90th birthday.
منابع مشابه
Gauss periods as constructions of low complexity normal bases
Optimal normal bases are special cases of the so-called Gauss periods (Disquisitiones Arithmeticae, Articles 343-366); in particular, optimal normal bases are Gauss periods of type (n,1) for any characteristic and type (n,2) for characteristic 2. We present the multiplication tables and complexities of Gauss periods of type (n, t) for all n and t = 3,4,5 over any finite field and give a slightl...
متن کاملMultiplicative Order of Gauss Periods
We obtain a lower bound on the multiplicative order of Gauss periods which generate normal bases over finite fields. This bound improves the previous bound of J. von zur Gathen and I. E. Shparlinski.
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملNormal bases via general Gauss periods
Gauss periods have been used successfully as a tool for constructing normal bases in finite fields. Starting from a primitive rth root of unity, one obtains under certain conditions a normal basis for Fqn over Fq, where r is a prime and nk = r− 1 for some integer k. We generalize this construction by allowing arbitrary integers r with nk = φ(r), and find in many cases smaller values of k than i...
متن کاملNORMAL 6-VALENT CAYLEY GRAPHS OF ABELIAN GROUPS
Abstract : We call a Cayley graph Γ = Cay (G, S) normal for G, if the right regular representation R(G) of G is normal in the full automorphism group of Aut(Γ). In this paper, a classification of all non-normal Cayley graphs of finite abelian group with valency 6 was presented.
متن کامل